

Revision 5 Reaction pathways, enthalpy and galvanic cells

 A weighed sample of methyl palmitate, C17H34O2, was burnt in excess oxygen in a bomb calorimeter. The experimental results are shown in the following table.

mass of methyl palmitate	4.56 g
temperature rise	2.36 °C
calorimeter constant (calibration factor)	42.4 kJ °C ⁻¹
<i>M</i> (C ₁₇ H ₃₄ O ₂)	270.0 g mol ⁻¹

a) Use the data provided to calculate the molar enthalpy of combustion of the methyl palmitate

Step 1 find the mol of methyl palmitate => 4.56 / 270.0 = 0.0169Step 2 find the energy released => E = 2.36 X 42.4 = 100.1 KJStep 3 find the molar enthalpy of combustion => 100.1 / 0.0169 = 5920 kJ/mol

b) Write a balanced **thermochemical** equation for the combustion reaction.

$2C_{17}H_{34}O_2(s) + 49O_2(g) \rightarrow 34CO_2(g) + 34H_2O(g) \Delta H = -11841 \text{ kJ/mol}$

- The switch in the galvanic cell on the right may be closed to allow a current to flow through the circuit.
 - a) Which of the electrodes can be made of carbon? *A*
 - b) Indicate on the diagram the direction of electron flow.
 - c) Indicate the direction of positive ion flow.
 - d) What is the predicted cell voltage measured at the voltmeter when the switch is closed?
 0.43 V
 - e) Indicate the anode and cathode.
 - f) Write the overall reaction taking place in the cell when the switch is closed?

$2Fe^{3+}(aq) + Cu(s) \rightarrow 2Fe^{2+} + Cu^{2+}(aq)$

- g) The galvanic cell is to be recharged. It is connected to a power source and the switch closed. Indicate on the diagram
 - i. The polarity of the electrodes.
 - ii. The cathode and anode
 - *iii.* The half-cell reactions taking place oxidation $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e$ reduction $Cu^{2+}(aq) + 2e \rightarrow Cu(s)$

